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ABSTRACT
Prediction of future observations is an important problem in many practical appli-
cations. This paper focuses on considering one-sample and two-sample prediction
(as a special case of the multi-sample prediction) for a future observation from ad-
ditive flexible Weibull extension-Lomax distribution. Non-Bayesian and Bayesian
prediction based on Type II censoring scheme are studied. The conditional pre-
diction approach is discussed as a non-Bayesian prediction method. Also, Bayesian
prediction is obtained under two different loss functions, the squared error and linear-
exponential loss functions. Moreover, a simulation study is conducted to evaluate
the performance of the derived predictors and three applications of COVID -19 data
in some countries are considered.

KEYWORDS
Additive flexible Weibull extension-Lomax distribution, one-sample prediction,
two-sample prediction, conditional prediction approach, Bayesian prediction,
squared error loss function, linear-exponential loss function.

1. Introduction

Prediction of future observations is an important problem in many practical applica-
tions such as agricultural, industrial, demographic, medical, biological and engineering
experiments. Many researchers have considered prediction for future observation from
different lifetime distributions. Singh et al. (2013) studied one-sample and two-sample
Bayesian prediction for future observation from Type-II censored sample from flexible
Weibull extension (FWE) distribution. Valiollahi et al. (2017) considered one-sample
prediction of future observation based on Type I and Type II hybrid censored samples
from a two-parameter generalized exponential distribution. They used the likelihood
and conditional prediction approaches as non-Bayesian and Bayesian prediction meth-
ods under the squared error (SE) loss function.

Sen et al. (2018) investigated the problem of a one-sample prediction of a future ob-
servation from the lognormal distribution using Bayesian and non-Bayesian methods
based on Type I progressive hybrid censoring. Furthermore, Valiollahi et al. (2019)
studied the one-sample prediction of a future observation based on Type I hybrid cen-
sored sample using the likelihood and the conditional prediction approach. Recently,

. Email:aah elhelbawy@hotmail.com



80 Journal of Econometrics and Statistics
Asian Journal of Statistical Sciences EL-Helbawy et al.

Ateya et al. (2022) studied the one-sample and two-sample prediction schemes for a fu-
ture observation from Burr X distribution based on a unified hybrid censoring scheme
using the likelihood and the Bayesian prediction methods.

There are different types of lifetime data in reliability studies, lifetime testing, hu-
man mortality studies, engineering modeling, electronic sciences and biological sur-
veys. Hence, different shapes of lifetime distributions are required for fitting these
types of lifetime data. Researchers have proposed several extensions and modifica-
tions to provide more flexibility than the existing distributions. Therefore, a lot of
references presented several methods for constructing, extending and generalizing life-
time distributions such as: the transformations of variables and distribution functions,
probability integral transforms, compound distributions, finite and infinite mixture
distributions and competing risks approach. [see Lai (2013)].

Competing risks often arise when there are more than one cause or mode of failure.
These failure modes in some sense compete to cause the failure of the experimental
unit, which is known in statistical literature as competing risks. Also, competing risks
can occur frequently in series systems, in which their components are arranged in series.
The lifetime of each component has a certain distribution with certain parameters.
Assuming that the lifetimes of the components of the series system are statistically
independent, then the lifetime of the series system can be obtained as the minimum
of its components lifetimes. Furthermore, there are many lifetime distributions that
were constructed based on the competing risks approach.

Some references in the field of the competing risks include Xie and Lai (1995),
Wang (2000), Almalki and Yuan (2013), He et al. (2016), Oluyede et al. (2016), Singh
(2016), Mdlongwa et al. (2017), Tarvirdizade and Ahmedpour (2019), Shakhatreh et
al. (2019), Osagie and Osemwenkhae (2020), Kamal and Ismail (2020), Thach and Bris
(2021), Makubate et al. (2021), Abba et al. (2022), Xavier et al. (2022) and Thach
(2022).

Recently, Salem et al. (2022) introduced the additive flexible Weibull extension-
Lomax (AFWE-L) distribution by considering a series system with two components
functioning independently in series. The lifetime of the first component, X1, has the
FWE distribution with parameters α and β, the FWE distribution was obtained by
Bebbington et al. (2007), and the lifetime of the second component, X2, has the Lo-
max (L) distribution with parameters λ and θ. Therefore, the lifetime of the system is
X=min {X1, X2} has AFWE-L distribution with parameter vector ψ = (α, β, λ, θ).
The probability density function (pdf), cumulative distribution function (cdf), relia-
bility function (rf) and hazard rate function (hrf) of AFWE-L distribution are given,
respectively, by:

f
(
x;ψ

)
=

[(
α+

β

x2

)
eαx−

β

x+
θ

λ

(
1+

x

λ

)−1
]
e−eαx− β

x

(
1+

x

λ

)−θ
, x> 0;ψ>0, (1)

F
(
x;ψ

)
= 1− e−eαx− β

x

(
1 +

x

λ

)−θ
, x > 0; ψ > 0, (2)

R
(
x;ψ

)
= e−eαx− β

x

(
1 +

x

λ

)−θ
, x > 0; ψ > 0, (3)
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and

h
(
x;ψ

)
=

(
α+

β

x2

)
eαx−

β

x+
θ

λ

(
1+

x

λ

)−1
, x> 0; ψ>0, (4)

AFWE-L distribution has highly flexibility and diversity in the shapes of the pdf
as well as the hrf which allow this distribution to fit several types of lifetime data.
Since, its pdf exhibit decreasing, unimodal and decreasing-unimodal shapes and its
hrf distribution can be increasing, decreasing, bathtub, bi-bathtub and modified bath-
tub shapes. Salem et al. (2022) derived some main properties of AFWE-L distribu-
tion and estimated the model parameters, rf and hrf using the maximum likelihood
(ML) method based on Type II censoring scheme. Also, they obtained the asymptotic
confidence intervals of the parameters, rf and hrf. Moreover, they demonstrated the
superiority of AFWE-L distribution over some existing distributions through three ap-
plications to COVID-19 data in some countries. Bayesian estimation of the AFWE-L
distribution parameters, rf, hrf and reversed hazard rate function (rhrf) is discussed
by Abd EL-Kader et al. (2022) under the SE loss function as a symmetric loss func-
tion and the linear-exponential (LINEX) loss function as an asymmetric loss function
based on Type II censoring scheme.

The rest of this paper is organized as follows: in Section 2, different one-sample pre-
dictors for future observation from AFWE-L distribution based on Type II censoring
scheme are obtained using non-Bayesian and Bayesian approaches. Also, confidence
and credible intervals are discussed. Non-Bayes and Bayes two-sample predictors (point
and interval) for future observation from AFWE-L distribution based on Type II cen-
soring scheme are derived in Section 3. In Section 4, a simulation study is conducted
to evaluate the performance of the derived predictors. Finally, three applications to
COVID-19 data in some countries are given in Section 5.

2. One-Sample Prediction

In this section, non-Bayes and Bayes one-sample predictors for future observation from
AFWE-L distribution based on Type II censoring scheme are obtained.
Let X(1), X(2), · · · , X(r); r ≤ n represent the observed ordered lifetimes of a cen-
sored Type II sample (the informative sample) from AFWE-L distribution and
X(r+1), X(r+2), · · · , X(n) is the unobserved future ordered lifetimes (the future sample)
from the same distribution. This section aims is to derive predictors of the unobserved
future ordered statistic Y(s) = X(s) for r < s ≤ n.
The conditional pdf of Y(s) given x = x(1), . . . , x(r) is

f
(
y(s)

∣∣ x;ψ) = Cr,s,nf
(
y(s);ψ

) [
R
(
x(r);ψ

)
−R

(
y(s);ψ

)]s−r−1

[
R
(
y(s);ψ

)]n−s

[
R
(
x(r);ψ

)]n−r ,

y(s) > x(r),

(5)

where

Cr,s,n =
(n− r)!

(s− r − 1)! (n− s)!
.
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Since,

f
(
y(s);ψ

)
= h

(
y(s);ψ

)
R
(
y(s);ψ

)
,

and by using the binomial expansion of
[
R
(
xr;ψ

)
−R

(
y(s);ψ

)]s−r−1
in (5),

one obtains

[
R
(
x(r);ψ

)
−R

(
y(s);ψ

)]s−r−1
=

s−r−1∑
j=0

(
s− r − 1

j

)
(−1)j

[
R
(
y(s);ψ

)]j[
R
(
x(r);ψ

)]s−r−j−1
.

Hence, (5) can be rewritten as:

f
(
y(s)

∣∣ x;ψ) =
s−r−1∑
j=0

Cr,s,n,jh
(
y(s);ψ

)
[
R
(
y(s);ψ

)

R
(
x(r);ψ

)
]n−s+j+1

, y(s) > x(r), (6)

where

Cr,s,n,j =
(n− r)!(−1)j

j! (s− r − j − 1)! (n− s)!
. (7)

Substituting (3) and (4) into (6), then the conditional pdf of Y(s) given x =
x(1), . . . , x(r) is given by:

f
(
y(s)

∣∣ x;ψ) =
s−r−1∑
j=0

Cr,s,n,jh
(
y(s);ψ

)
exp

{
− (n− s+ j + 1)

[
e
αy(s)− β

y(s) − u(r)

+θln
(
1+

y(s)

λ

)
− θlnw(r)

]}
, y(s) > x(r),

(8)

where Cr,s,n,j is given by (7),

u(r) = e
αx(r)− β

x(r) , (9)

w(r) =
(
1+

x(r)

λ

)
, (10)

and

h
(
ys;ψ

)
=

[(
α+

β

y2(s)

)
e
αy(s)− β

y(s) +
θ

λ

(
1+

y(s)

λ

)−1
]
. (11)
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2.1. Conditional prediction approach

In this subsection, one-sample conditional prediction approach is applied to derive
point and interval predictors of Y(s).

a. Point prediction
The conditional predictor of Y(s); ŷ(s)C , can be derived using (8), then using the

invariance property of the ML estimators, the parameters ψ=(α, β, λ, θ) will be re-

placed by their ML estimators, ψ̂ =
(
α̂, β̂, λ̂, θ̂

)
, which were derived by Salem et al.

(2022) as follows:

f
(
y(s)

∣∣∣ x; ψ̂
)
=

s−r−1∑
j=0

Cr,s,n,jh
(
y(s); ψ̂

)

×exp

{
− (n− s+ j + 1)

[
e
α̂y(s)− β̂

y(s) − û(r) + θ̂ln

(
1+

y(s)

λ̂

)
− θ̂lnŵ(r)

]}
,

y(s) > x(r),

(12)

whereCr,s,n,j is given by (7),

û(r) = e
α̂x(r)− β̂

x(r) ,

ŵ(r) =

(
1+

x(r)

λ̂

)
,

and

h
(
y(s); ψ̂

)
=

[(
α̂+

β̂

y2(s)

)
e
α̂y(s)− β̂

y(s) +
θ̂

λ̂

(
1+

y(s)

λ̂

)−1
]
.

Then, the conditional predictor ŷ(s) can be obtained as given below

ŷ(s) = E
(
y(s)

∣∣∣ ψ̂
)
=

∫

y(s)

y(s)f
(
y(s)

∣∣∣ x; ψ̂
)
dy(s)=

∫ ∞

x(r)

y(s)

s−r−1∑
j=0

Cr,s,n,jh
(
y(s); ψ̂

)

× exp

{
− (n− s+ j + 1)

[
e
α̂y(s)− β̂

y(s) − û(r) + θ̂ln

(
1+

y(s)

λ̂

)
− θ̂lnŵ(r)

]}
dy(s).

(13)

Numerical method can be used to obtain ŷ(s).

b. Interval prediction
Using the conditional pdf of the sth order statistic given x = x(1), . . . , x(r) and

by replacing the parameters ψ=(α, β, λ, θ) by their ML estimators ψ̂ =
(
α̂, β̂, λ̂, θ̂

)
as

5
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in (12), the (1− ω) 100% conditional predictive interval for the future ordered failure,
Y(s) can be derived from the following probability:

P
[
LC1 (x) < Y(s) < UC1 (x) |x

]
= 1− ω, (14)

where LC1 (x) and UC1 (x) are the lower and upper bounds of the prediction interval
based on the conditional prediction approach.
The conditional predictive bounds, (LC1 (x) , UC1 (x)), can be obtained as given below:

P
[
Y(s) > LC1 (x) |x

]
=

∫ ∞

LC1(x)
f
(
y(s)

∣∣∣ x;ψ̂
)
dy(s) = 1− ω

2
, (15)

and

P
[
Y(s) > UC1 (x) |x

]
=

∫ ∞

UC1(x)
f
(
y(s)

∣∣∣ x;ψ̂
)
dy(s) =

ω

2
. (16)

Substituting (12) into (15) and (16), then the lower and upper bounds of the prediction
interval of Y(s) can be calculated numerically.

2.2. Bayesian prediction

In this subsection, one-sample Bayesian prediction of the future ordered failure, Y(s),
from AFWE-L distribution based on Type II censoring scheme is derived under the
SE loss function as a symmetric loss function and under the LINEX loss function as
an asymmetric loss function. Also, credible interval of Y(s) is obtained.

Suppose that x(1) ≤ x(2) ≤ . . . ≤ x(r) is a censored sample of size r from AFWE-L
distribution with parameter vector ψ = (α, β, λ, θ), then the likelihood function can
be obtained as follows:

L
(
ψ
∣∣ x) = n!

(n− r)!

[
r∏

i=1

h
(
x(i);ψ

)] [ r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r) exp

{
− (n− r)u(r) −

r∑
i=1

u(i)

}
,

(17)
where

h
(
x(i);ψ

)
=

[(
α+

β

x2(i)

)
e
αx(i)− β

x(i) +
θ

λ

(
1 +

x(i)

λ

)−1
]
. (18)

u(i) = e
αx(i)− β

x(i) , (19)

w(i) =
(
1 +

x(i)

λ

)
, (20)

and u(r) and w(r) are given in (9) and (10), respectively.
Using the joint prior distribution suggested by Abd EL-Kader et al. (2022) as follows:

6
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π
(
ψ
)
∝αa1βa1+a2λa3θa3+a4e

−β
(

α

b1
+ 1

b2

)
−θ

(
λ

b3
+ 1

b4

)
,

α, β, λ, θ> 0;a1, a3> −1,a2, a4, b1, b2, b3, b4> 0,
(21)

where ai and bi, i = i, 2, 3, 4, are the hyperparameters of the joint prior distribution.
This joint prior distribution was derived by assuming that the

parametersψ=(α, β, λ, θ) = (ψ1, ψ2, ψ3, ψ4) of the AFWE-L distribution are un-
known random variables and the joint prior of the parameters α and β is independent
of the joint prior of the parameters λ and θ. Then, the joint prior distribution of ψ is

π
(
ψ
)
= π (α, β)π (λ, θ) . (22)

By assuming that the parameters α and β are dependent with a joint bivariate prior
distribution that was used by AL-Hussaini and Jaheen (1992), which is expressed as:

π (α, β)=π (α | β)π (β) , (23)

where

π (α | β)= αa1βa1+1

Γ (a1+1) ba1+1
1

e
−αβ

b1 , α, β> 0;a1> −1,b1> 0, (24)

and the marginal prior distribution of β is a gamma prior distribution with parameters
a2and b2 and the following pdf:

π (β)=
βa2−1

Γ (a2) b2
a2
e
− β

b2 , β> 0;a2, b2> 0. (25)

Then, the joint prior distribution of α and β can be obtained by substituting (24) and
(25) into (23) as follows:

π (α, β)∝αa1βa1+a2e
−β

(
α

b1
+ 1

b2

)
, α, β> 0;a1> −1,a2, b1, b2> 0. (26)

Similarly, by assuming that λ and θ are dependent with the following joint bivariate
prior distribution:

pi (λ, θ)=π (λ | θ)π (θ) , (27)

where

π (λ | θ)= λa3θa3+1

Γ (a3+1) ba3+1
3

e
−λθ

b3 , λ, θ> 0;a3> −1,b3> 0, (28)

and the marginal prior distribution of θ is a gamma prior distribution with parameters

7
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a4and b4 and the following pdf:

π (θ)=
θa4−1

Γ (a4) b4
a4
e
− θ

b4 , θ> 0;a4, b4> 0. (29)

Hence, the joint prior distribution of λ and θ can be given by substituting (28) and
(29) into (27) as:

π (λ, θ)∝λa3θa3+a4e
−θ

(
λ

b3
+ 1

b4

)
, λ, θ> 0;a3> −1,a4, b3, b4> 0. (30)

Substituting (26) and (30) into (22) the joint prior distribution of ψ=(α, β, λ, θ)
can be obtained which is given in (21).
The joint posterior distribution of ψ=(α, β, λ, θ) can be formed using (17) and (21)
as:

π
(
ψ
∣∣ x) = A L

(
ψ
∣∣ x)π (

ψ
)
, (31)

where
A is the normalizing constant defined by:

A−1=

∫

ψ
L
(
ψ
∣∣ x)π (

ψ
)
dψ, (32)

where

∫

ψ
=

∫ ∞

α=0

∫ ∞

β=0

∫ ∞

λ=0

∫ ∞

θ=0
and dψ=dαdβdλdθ. (33)

Then,

π
(
ψ
∣∣ x)= Aαa1βa1+a2λa3θa3+a4

[
r∏

i=1

h
(
x(i);ψ

)] [ r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r)

× exp

{
−β

(
α

b1
+

1

b2

)
−θ

(
λ

b3
+

1

b4

)
− (n−r)u(r)−

r∑
i=1

u(i)

}
,

(34)

where
h
(
x(i);ψ

)
is given by (18), u(r) and w(r) are defined in (9) and (10) and u(i) and w(i)

are defined in (19) and (20).
The Bayesian predictors (BPs) of Y(s) can be derived from the Bayesian predictive

density (BPD), using the conditional pdf of Y(s) given x=x(1), . . . , x(r), f
(
y(s)

∣∣ x;ψ),
and the joint posterior distribution of ψ=(α, β, λ, θ), the BPD of Y(s) given x can be
obtained as:

8
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g
(
y(s)

∣∣ x)=
∫

ψ
f
(
y(s)

∣∣ x;ψ)π (
ψ
∣∣ x) dψ. (35)

Substituting (8) and (34) into (35), then the BPD can be obtained as:

g
(
y(s)

∣∣ x)=
∫

ψ
Aαa1βa1+a2λa3θa3+a4

s−r−1∑
j=0

Cr,s,n,jh
(
y(s);ψ

)

× exp

{
− (n− s+ j + 1)

[
e
αy(s)− β

y(s) − u(r) + θln
(
1+

y(s)

λ

)

−θlnw(r)

]
−β

(
α

b1
+

1

b2

)
−θ

(
λ

b3
+

1

b4

)
− (n−r)u(r)

−
r∑

i=1

u(i)

}[
r∏

i=1

h
(
x(i);ψ

)
] [

r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r) dψ,

(36)

where∫
ψ and dψ are given in (33), A is the normalizing constant defined in (32)

and Cr,s,n,j , h
(
y(s);ψ

)
and h

(
x(i);ψ

)
are given, respectively, by (7), (9) and (18).

a. Point prediction
The BP of Y(s) under the SE loss function, denoted by ỹ(s)SE , can be derived as

follows:

ỹ(s)SE=E
(
y(s)

∣∣ x)=
∫

y(s)

y(s)g
(
y(s)

∣∣ x) dy(s). (37)

Using the BPD in (36) and substituting it into (37) as given below

ỹ(s)SE =

∫ ∞

x(r)

∫

ψ
Aαa1βa1+a2λa3θa3+a4y(s)

s−r−1∑
j=0

Cr,s,n,jh
(
y(s);ψ

)

× exp

{
− (n− s+ j + 1)

[
e
αy(s)− β

y(s) − u(r) + θln
(
1+

y(s)

λ

)

− θlnw(r)

]
−β

(
α

b1
+

1

b2

)
−θ

(
λ

b3
+

1

b4

)
− (n−r)u(r)−

r∑
i=1

u(i)

}

×

[
r∏

i=1

h
(
x(i);ψ

)] [ r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r) dψdy(s).

(38)

The BP of Y(s) under the LINEX loss function can be derived as follows:

9
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ỹ(s)LIN=
−1

ν
ln
[
E
(
e−νy(s)

∣∣ x)] , (39)

where

E
(
e−νy(s)

∣∣ x)=
∫

y(s)

e−νy(s)g
(
y(s)

∣∣ x) dy(s)

=

∫ ∞

x(r)

∫

ψ
Aαa1βa1+a2λa3θa3+a4e−νy(s)

∫ s−r−1

j=0
Cr,s,n,jh

(
y(s);ψ

)

× exp

{
− (n− s+ j + 1)

[
e
αy(s)− β

y(s) − u(r) + θln
(
1+

y(s)

λ

)

− θlnw(r)

]
−β

(
α

b1
+

1

b2

)
−θ

(
λ

b3
+

1

b4

)
− (n−r)u(r)−

r∑
i=1

u(i)

}

×

[
r∏

i=1

h
(
x(i);ψ

)
] [

r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r) dψdy(s).

(40)

Substituting (40) into (39), then the BP under the LINEX loss function can be
obtained.

b. Interval prediction
The (1−ω) 100% Bayesian predictive bounds (BPBs), (LB1 (x) , UB1 (x)) of the fu-

ture order statistic, Y(s), can be obtained using the following probabilities:

P
[
Y(s)>LB1 (x) |x

]
=

∫ ∞

LB1(x)
g
(
y(s)

∣∣ x) dy(s)= 1−ω

2
, (41)

and

P
[
Y(s)>UB1 (x) |x

]
=

∫ ∞

UB1(x)
g
(
y(s)

∣∣ x) dy(s)=ω

2
. (42)

Substituting the BPD given by (36) into (41) and (42) and solving numerically for
the BPBs.

Remarks

• If s = r + 1, the conditional predictor, ŷ(1), and BP under the SE and LINEX
loss functions, ỹ(1)SE and ỹ(1)LIN , of the first observation in the future sample
can be obtained.

• If s = n−r+1
2 (when the future sample size is odd), the conditional predic-

tor, ŷ(n−r+1

2 ), and BP under the SE and LINEX loss functions, ỹ(n−r+1

2 )SE and

ỹ(n−r+1

2 )LIN , of the median of the future sample can be obtained.

• If s = n− r, the conditional predictor, ŷ(n−r), and BP under the SE and LINEX
loss functions, ỹ(n−r)SE and ỹ(n−r)LIN , of the last observation in the future sam-
ple can be obtained.
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3. Two-Sample Prediction

This section is devoted to investigate non-Bayesian and Bayesian two-sample predic-
tion (point and interval) for future observation from the AFWE-L distribution based
on Type II censoring scheme.

Suppose that X(1), X(2), · · · , X(r) is the observed ordered lifetimes of a censored
Type II sample of size n (the informative sample) from the AFWE-L distribution and
Z(1), Z(2), · · · , Z(m) is the order statistics of a future sample of size m from AFWE-L
distribution. Assuming that the two samples are independent. This section aims to
derive different predictors for the future order statistic Z(s), for 1 ≤ s ≤ m. The pdf

of the sth order statistic from the future sample is defined by:

f
(
z(s)

∣∣ ψ) = Cs,mf
(
z(s);ψ

) [
1−R

(
z(s);ψ

)]s−1[
R
(
z(s);ψ

)]m−s
, z(s) > 0, (43)

were

Cs,m =
m!

(s− 1)! (m− s)!
.

Since

f
(
z(s);ψ

)
= h

(
z(s);ψ

)
R
(
z(s);ψ

)
,

Using the binomial expansion of
[
1−R

(
z(s);ψ

)]s−1
.

Hence
[
1−R

(
z(s);ψ

)]s−1
=

∑s−1
j=0

(
s−1
j

)
(−1)j

[
R
(
z(s);ψ

)]j
.

Then (43) can be rewritten as follows:

(
z(s)

∣∣ ψ) =
s−1∑
j=0

Cs,m,jh
(
z(s);ψ

) [
R
(
z(s);ψ

)]j+m−s+1
, z(s) > 0, (44)

where

Cs,m,j=
m!(−1)j

j! (s− j − 1)! (m− s)!
(45)

Substituting (3) and (4) into (44), then the pdf of the sth order statistic from the
future sample is given by:

f
(
z(s)

∣∣ ψ) =
s−1∑
j=0

Cs,m,jh
(
z(s);ψ

)
exp

{
− (j +m− s+ 1)

[
e
αz(s)− β

z(s)

+θln
(
1+

z(s)

λ

) ]}
, z(s) > 0,

(46)

where
Cs,m,j is defined in (45) and

11
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h
(
z(s);ψ

)
=

[(
α+

β

z2(s)

)
e
αz(s)− β

z(s) +
θ

λ

(
1 +

z(s)

λ

)−1
]
. (47)

3.1. Conditional prediction approach

In this subsection, two-sample conditional prediction approach is used to present
point and interval predictor of Z(s).

a. Point prediction
The conditional predictor of Z(s); ẑ(s), can be derived using the pdf of the sth order

statistic of the future sample in (46). Then using the invariance property of the ML
estimators, the parameters ψ=(α, β, λ, θ) will be replaced by their ML estimators,

ψ̂ =
(
α̂, β̂, λ̂, θ̂

)
, which were derived in Salem et al. (2022) as follows:

f
(
z(s)

∣∣∣ ψ̂
)
=

s−1∑
j=0

Cs,m,jh
(
z(s);ψ̂

)
,

×exp

{
− (j +m− s+ 1)

[
e
α̂z(s)− β̂

z(s) + θ̂ln

(
1+

z(s)

λ̂

) ]}
, z(s) > 0.

(48)

where
Cs,m,j is given by (45) and

h
(
z(s);ψ̂

)
=

(
α̂+

β̂

z2(s)

)
e
α̂z(s)− β̂

z(s) +
θ̂

λ̂

(
1 +

z(s)

λ̂

)−1

. (49)

Then, the conditional predictor of Z(s) can be obtained as follows:

ẑ(s) = E
(
Z(s)

∣∣∣ ψ̂
)
=

∫

z(s)

z(s)f
(
z(s)

∣∣∣ ψ̂
)
dz(s)

=

∫ ∞

0
z(s)

s−1∑
j=0

Cs,m,jh
(
z(s);ψ̂

)

×exp

{
− (j +m− s+ 1)

[
e
α̂z(s)− β̂

z(s) + θ̂ln

(
1+

z(s)

λ̂

) ]}
dz(s) .

(50)

Numerical method can be used to obtain ẑ(s).

b. Interval prediction
Using the pdf of the sth order statistic given x = x(1), . . . , x(r) and by replacing

the parameters ψ=(α, β, λ, θ) by their ML estimators ψ̂ =
(
α̂, β̂, λ̂, θ̂

)
as in (48), the

12
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(1− ω) 100% conditional predictive interval for the future ordered failure, Z(s) can be
derived from the following probability:

P
[
LC2 (x) < Z(s) < UC2 (x) |x

]
= 1− ω, (51)

where LC2 (x) and UC2 (x) are the lower and upper bounds of the prediction interval
based on the conditional prediction approach.
The conditional predictive bounds, (LC2 (x) , UC2 (x)), can be obtained as given below

P
[
Z(s) > LC2 (x) |x

]
=

∫ ∞

LC2(x)
f
(
z(s)

∣∣∣ ψ̂
)
dz(s) = 1− ω

2
, (52)

and

P
[
Z(s) > UC2 (x) |x

]
=

∫ ∞

UC2(x)
f
(
z(s)

∣∣∣ ψ̂
)
dz(s) =

ω

2
. (53)

Substituting (48) into (52) and (53), then the lower and upper bounds of the prediction
interval of Z(s) can be obtained by solving numerically.

3.2. Bayesian prediction

In this subsection, two-sample Bayesian prediction of a future order statistic, Z(s),
from AFWE-L distribution based on Type II censoring scheme is considered under
the SE loss function as a symmetric loss function and under the LINEX loss function
as an asymmetric loss function. Moreover, credible interval of Z(s) is obtained.
The BPs of Z(s) can be derived from the BPD of Z(s). Using the pdf of Z(s), and

the joint posterior distribution of ψ=(α, β, λ, θ); π
(
ψ
∣∣ x), the BPD of Z(s) given x is

defined by:

g
(
z(s)

∣∣ x) =
∫

ψ
f
(
z(s)

∣∣ ψ)π (
ψ
∣∣ x) dψ. (54)

Substituting (46) and (34) into (54), then the BPD can be obtained as follows:

g
(
z(s)

∣∣ x) =
∫

ψ
Aαa1βa1+a2λa3θa3+a4

s−1∑
j=0

Cs,m,jh
(
z(s);ψ

)

×exp

{
− (j +m− s+ 1)

[
e
αz(s)− β

z(s) + θln
(
1+

z(s)

λ

) ]}

×

[
r∏

i=1

h
(
x(i);ψ

)] [ r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r) exp

{
−β

(
α

b1
+

1

b2

)

−θ

(
λ

b3
+

1

b4

)
− (n−r)u(r)−

r∑
i=1

u(i)

}
dψ,

(55)

13
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where∫
ψ and dψ are given in (33), A is the normalizing constant defined in (32), and

Cs,m,j , h
(
z(s);ψ

)
and h

(
x(i);ψ

)
are defined in (45), (47) and (18) and u(r), w(r), u(i)

and w(i) are given, respectively, in (9), (10), (19) and (20).

a. Point prediction
The BP of Z(s) under the SE loss function can be derived as follows:

z̃(s)SE = E
(
z(s)

∣∣ x) =
∫

z(s)

z(s)g
(
z(s)

∣∣ x) dz(s)

=

∫ ∞

0

∫

ψ
Aαa1βa1+a2λa3θa3+a4z(s)

s−1∑
j=0

Cs,m,jh
(
z(s);ψ

)

×exp

{
− (j +m− s+ 1)

[
e
αz(s)− β

z(s) + θln
(
1+

z(s)

λ

) ]}

×

[
r∏

i=1

h
(
x(i);ψ

)
] [

r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r) exp

{
−β

(
α

b1
+

1

b2

)

−θ

(
λ

b3
+

1

b4

)
− (n−r)u(r)−

r∑
i=1

u(i)

}
dψdz(s).

(56)

By solving (56) numerically, the BP of Z(s) under the SE loss function can be obtained.
The BP of Z(s) under the LINEX loss function can be derived as given below:

z̃(s)LIN =
−1

ν
ln
[
E
(
e−νz(s)

∣∣ x)] , (57)

where

E
(
e−νz(s)

∣∣ x) =
∫

z(s)

e−νz(s)g
(
z(s)

∣∣ x) dz(s)

=

∫ ∞

0

∫

ψ
Aαa1βa1+a2λa3θa3+a4z(s)

s−1∑
j=0

Cs,m,jh
(
z(s);ψ

)

×exp

{
− (j +m− s+ 1)

[
e
αz(s)− β

z(s) + θln
(
1+

z(s)

λ

) ]}

×

[
r∏

i=1

h
(
x(i);ψ

)] [ r∏
i=1

w−θ
(i)

]
w

−θ(n−r)
(r) exp

{
−β

(
α

b1
+

1

b2

)

−θ

(
λ

b3
+

1

b4

)
− (n−r)u(r)−

r∑
i=1

u(i)

}
dψdz(s).

(58)

Substituting (58) into (57), then the BP under the LINEX loss function can be

14
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obtained.

b. Interval prediction
The (1− ω) 100% BPBs, (LB2 (x) , UB2 (x)) of the future order statistic, Z(s), can

be obtained using the following probabilities:

P
[
Z(s) > LB2 (x) |x

]
=

∫ ∞

LB2(x)
g
(
z(s)

∣∣ x) dz(s) = 1− ω

2
, (59)

and

P
[
Z(s) > UB2 (x) |x

]
=

∫ ∞

UB2(x)
g
(
z(s)

∣∣ x) dz(s) = ω

2
. (60)

Substituting the BPD in (55) into (59) and (60) the BPBs of Z(s) can be obtained.

Remarks

• If s = 1, the conditional predictor, z(1), and BP under the SE and LINEX loss
functions, z̃(1)SE and z̃(1)LIN , of the first observation in the future sample can
be obtained.

• If s = m+1
2 (when the future sample size is odd), the conditional predic-

tor, ẑ(m+1

2 ), and BP under the SE and LINEX loss functions, z̃(m+1

2 )SE and

z̃(m+1

2 )LIN , of the median of the future sample can be obtained.

• If s = m, the conditional predictor, ẑ(m), and BP under the SE and LINEX loss
functions, z̃(m)SE and z̃(m)LIN , of the last observation in the future sample can
be obtained.

4. Simulation Study

In this section, a simulation study is conducted to evaluate the performance of the dif-
ferent predictors of future observation based on one-sample and two-sample prediction
schemes. Also, the performance of BPs under the SE loss function is compared with
the BPs under the LINEX loss function based on the conducted simulation study.

4.1. Conditional prediction approach

� For evaluating the performance of the conditional predictors of the future ob-
servation from the AFWE-L distribution under 30% level of Type II censoring
scheme based on one-sample and two-sample prediction the following steps are
used:

a Generate random samples of size n = 30 from the AFWE-L distribution using
three combinations of the population parameter values:

I : (α = 1.15, β = 0.3, λ = 0.15, θ = 0.1) ,
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II : (α= 0.8,β= 0.5,λ= 0.5,θ= 0.5) ,

and

III : (α = 0.5, β = 0.25, λ = 0.15, θ = 0.1) .

b. Substituting the ML estimates of the parameters, ψ̂ =
(
α̂, β̂, λ̂, θ̂

)
, into the

equation of the conditional pdf of the sth order statistic given x = x(1), . . . , x(r)
in the case of one-sample prediction and for given values of s, where r < s ≤ n
, the conditional prediction for the future observation ŷ(s)C can be computed
based on 30% level of Type-II censoring.

c. Substituting the ML estimates of the parameters, ψ̂ =
(
α̂, β̂, λ̂, θ̂

)
, into the

equation of the pdf of the sth order statistic in the case of two-sample prediction
and for given values of m (future sample size) and s, where 1 ≤ s ≤ m , the
conditional prediction for the future observation ẑ(s)C can be computed based
on 30% level of Type-II censoring.

d. The simulation study is conducted using number of replications (NR), NR =
1000 using Mathematica 11.

Tables 1 - 3 display the conditional predictors of the future observation from the
AFWE-L distribution and the bounds of the conditional intervals of the future obser-
vation along with their lengths based on the one-sample prediction scheme.

Tables 4 - 6 present the conditional predictors of the future observation from the
AFWE-L distribution and the bounds of the conditional intervals of the future obser-
vation along with their lengths based on the two-sample prediction scheme.

Table 1
One-sample conditional predictors and 95% conditional intervals of future observation

from AFWE-L distribution along with their lengths for different sample size
n = 30, r = 21, NR = 1000 and (α = 1.15, β = 0.3, λ = 0.15, θ = 0.1)

s ŷ(s)c LL UL Length

22 0.6476 0.5341 0.7151 0.1810
26 1.1505 0.9299 1.2851 0.3552
30 1.6492 1.0585 1.9016 0.8432

Table 2
One-sample conditional predictors and 95% conditional intervals of future observation from

AFWE-L distribution along with their lengths for sample size
n = 30, r = 21, NR = 1000 and (α = 0.8, β = 0.5, λ = 0.5, θ = 0.5)

s ŷ(s)c LL UL Length

22 0.2472 0.1375 0.3674 0.2299
26 0.9137 0.5612 1.1137 0.5525
30 2.1604 1.4445 2.3159 0.8714
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Table 3
One-sample conditional predictors and 95% conditional intervals of future observation from

AFWE-L distribution along with their lengths for sample size
n = 30, r = 21, NR = 1000 and (α = 0.5, β = 0.25, λ = 0.15, θ = 0.1)

s ŷ(s)c LL UL Length

22 1.2792 0.9426 1.4170 0.4744
26 2.6866 2.0634 2.9511 0.8877
30 4.3581 3.1065 4.8742 1.7677

Table 4
Two-sample conditional predictors and 95% conditional intervals of future observation from

AFWE-L distribution along with their lengths for sample size
n = 30 and m = 15, r = 21, NR = 1000 and (α = 1.15, β = 0.3, λ = 0.15, θ = 0.1)

s ẑ(s)c LL UL Length

1 0.2115 0.1032 0.2454 0.1422
8 0.6282 0.3847 0.7603 0.3756
15 1.8947 1.1846 1.9386 0.7541

Table 5
Two-sample conditional predictors and 95% conditional intervals of future observation from

AFWE-L distribution along with their lengths for sample size
n = 30 and m = 15, r = 21, NR = 1000 and (α = 0.8, β = 0.5, λ = 0.5, θ = 0.5)

s ẑ(s)c LL UL Length

1 0.2027 0.1055 0.2778 0.1723
8 0.7647 0.4552 1.0412 0.5860
15 2.6858 1.6797 2.8802 1.2005

Table 6
Two-sample conditional predictors and 95% conditional intervals of future observation from

AFWE-L distribution along with their lengths for sample size
n = 30 and m = 15, r = 21, NR = 1000 and (α = 0.5, β = 0.25, λ = 0.15, θ = 0.1)

s ẑ(s)c LL UL Length

1 0.1675 0.0839 0.2259 0.1420
8 0.7741 0.4142 1.2081 0.7939
15 3.7036 2.2493 4.0421 1.7928

4.2. Bayesian prediction

For evaluating the performance of the Bayes predictors of future observation from
the AFWE-L distribution under 30% level of Type II censoring scheme based on one-
sample and two-sample prediction, the following steps are used:

b To generate several random samples from the AFWE-L distribution, the follow-
ing steps are used:
� Three combinations of the population parameter value ψ=(α, β, λ, θ), are con-
sidered as follows:

I : (α = 0.8, β = 1.15, λ = 1.5, θ = 2) ,
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II : (α = 0.5, β = 0.3, λ = 0.5, θ = 0.3) ,

and

III : (α = 1.15, β = 0.3, λ = 0.15, θ = 0.8) ,

and sample size n = 30.
� Generate n independent random variables X1k from the FWE distribution
(α, β).
�Generate n independent random variables X2k from L distribution with (λ, θ).
� From Steps 1, 2 and 3, n independent random variables Xk from AFWE-L
distribution can be obtained as:

Xk = min (X1k, X2k) ,

where X1k and X2k are independent of each other.
c For given values of the hyperparameters, generate α and λ from the conditional
gamma prior distributions and generate β and θ from gamma prior distribution.

d For the one-sample prediction the conditional pdf of the sth order statistic
givenx = x(1), . . . , x(r) for given values of s, where r < s ≤ n, is used for
evaluating the BPD of a future observation, Y(s), from the AFWE-L distribu-
tion.

e For the two-sample prediction the pdf of the sth order statistic for given values
of s and the future sample size m, where 1 ≤ s ≤ m, is used for evaluating the
BPD of a future observation, Z(s), from the AFWE-L distribution.

f Based on Steps c and d, the BPs are calculated based on the SE and LINEX
loss functions. Also, the BPBs along with their lengths are evaluated.

g The simulation study is conducted using NR = 10000 using R programming
language.

Tables 7 - 9 display the BPs and BPBs of future observations from the AFWE-L
distribution and along with their lengths based on the one-sample prediction scheme.
Whereas Tables 10 - 12 present the BPs and BPBs of future observations from the
AFWE-L distribution along with their lengths based on the two-sample prediction
scheme.

Table 7
One-sample Bayes predictors and 95% Bayesian prediction bounds of future observations

from AFWE-L distribution along with their lengths under SE and LINEX
loss functions for sample size n = 30, r = 21, NR = 10000

s SE loss function LINEX loss function
ỹ(s)SE LL UL Length ỹ(s)LIN LL UL Length

22 0.4875 0.4763 0.4980 0.0217 0.4986 0.4911 0.5077 0.0166
26 0.7849 0.7763 0.7998 0.0235 0.7947 0.7853 0.8023 0.0169
30 1.1938 1.1822 1.2057 0.0235 1.1969 1.1850 1.2031 0.0181
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Table 8
One-sample Bayes predictors and 95% Bayesian prediction bounds of future observations

from AFWE-L distribution along with their lengths under SE and LINEX
loss functions for sample size n = 30, r = 21, NR = 10000

s SE loss function LINEX loss function
ỹ(s)SE LL UL Length ỹ(s)LIN LL UL Length

22 0.4875 0.4763 0.4980 0.0217 0.4986 0.4911 0.5077 0.0166
26 0.7849 0.7763 0.7998 0.0235 0.7947 0.7853 0.8023 0.0169
30 1.1938 1.1822 1.2057 0.0235 1.1969 1.1850 1.2031 0.0181

Table 9
One-sample Bayes predictors and 95% Bayesian prediction bounds of future observations

from AFWE-L distribution along with their lengths under SE and LINEX
loss functions for sample size n = 30, r = 21, NR = 10000

s SE loss function LINEX loss function
ỹ(s)SE LL UL Length ỹ(s)LIN LL UL Length

22 1.4938 1.4823 1.5031 0.0208 1.4948 1.4833 1.5033 0.0200
26 2.0859 2.0753 2.0993 0.0240 2.0917 2.0820 2.1035 0.0215
30 3.2337 3.2193 3.2490 0.0297 3.2407 3.2286 3.2552 0.0265

Table 10
Two-sample Bayes predictors and 95% Bayesian prediction bounds of future observations

from AFWE-L distribution along with their lengths under SE and LINEX
loss functions for sample size n = 30 and m = 15, r = 21, NR = 10000

s SE loss function LINEX loss function
z̃(s)SE LL UL Length z̃(s)LIN LL UL Length

1 0.2918 0.2846 0.3023 0.0178 0.2976 0.2922 0.3039 0.0117
8 0.5882 0.5741 0.5985 0.0244 0.5982 0.5899 0.6049 0.0150
15 0.9167 0.9009 0.9270 0.0261 0.8964 0.8859 0.9034 0.0174

Table 11
Two-sample Bayes predictors and 95% Bayesian prediction bounds of future observations

from AFWE-L distribution along with their lengths under SE and LINEX
loss functions for sample size n = 30 and m = 15, r = 21, NR = 10000

s SE loss function LINEX loss function
z̃(s)SE LL UL Length z̃(s)LIN LL UL Length

1 1.2030 1.1933 1.2197 0.0264 1.1977 1.1831 1.2077 0.0246
8 1.5050 1.4894 1.5184 0.0290 1.4912 1.4781 1.5037 0.0256
15 1.9920 1.9804 2.0108 0.0304 1.9926 1.9780 2.0052 0.0272
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Table 12
Two-sample Bayes predictors and 95% Bayesian prediction bounds of future observations

from AFWE-L distribution with their lengths under SE and LINEX
loss functions for sample size n = 30 and m = 15, r = 21, NR = 10000

s SE loss function LINEX loss function
z̃(s)SE LL UL Length z̃(s)LIN LL UL Length

1 0.1072 0.0978 0.1141 0.0163 0.0949 0.0880 0.1024 0.0144
8 0.2807 0.2679 0.2932 0.0253 0.2968 0.2884 0.3055 0.0171
15 0.7900 0.7752 0.8042 0.0290 0.7936 0.7833 0.8072 0.0240

5. Applications

This section is devoted to demonstrating the applicability and flexibility of the AFWE-
L distribution for data modeling and how the different presented predictors can be used
in practice through three applications of COVID-19 data in some countries that were
used in Salem et al.(2022).
Application 1

This application is presented by Mubarak and Almetwally (2021). The data repre-
sent a COVID-19 data belong to the United Kingdom of 76 days, from 15 April to 30
June 2020. these data formed of drought mortality rates. The data are: 0.0587, 0.0863,
0.1165, 0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395, 0.2751, 0.2845, 0.2992, 0.3188,
0.3317, 0.3446, 0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690, 0.4954, 0.5139,
0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438, 1.0602, 1.1305,
1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017, 1.6083, 1.6324, 1.6998,
1.8164, 1.8392, 1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609,
3.3715, 3.7840, 3.9042, 4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500, 5.7522, 6.4241,
7.0657, 7.4456, 8.2307, 9.6315, 10.1870, 11.1429, 11.2019 and 11.4584.

The AFWE-L distribution can be used for modelling this data set, since the Kol-
mogorov Smirnov (K−S) test statistic and its corresponding p-value were 0.0790 and
0.9735.

In this application, the one-sample prediction scheme is used for predicting the
remaining observations, (n− r), under 30% level of Type II censoring. Tables 13 and
14 present the one-sample conditional and Bayes predictors of Y(s), where r < s ≤ n.
Also, the prediction bounds and their lengths are obtained.
Moreover, the two-sample prediction is used for predicting a future observation, Z(s),
from a future sample with sizem of drought mortality rates of COVID-19 in the United
Kingdom, where 1 ≤ s ≤ m. Tables 15 and 16 display the two-sample conditional and
Bayes predictor of Z(s), where 1 ≤ s ≤ m. Also, the prediction bounds and their
lengths are presented.

Table 13
One-Sample conditional prediction and 95% condition interval bounds and their lengths

of the future observation for COVID-19 data of the United Kingdom

n r s ŷ(s)c LL UL Length

54 3.3146 2.4705 3.3277 0.8573
76 53 65 7.9910 5.4855 8.7079 2.2224

76 20.7681 14.1763 21.5442 7.3679
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Table 14
One-Sample Bayes predictors and 95% Bayesian prediction bounds with their lengths

of the future observation for COVID-19 data of the United Kingdom

n r s SE loss function LINEX loss function
ỹ(s)SE LL UL Length ỹ(s)LIN LL UL Length

54 3.3638 3.3526 3.3752 0.0226 3.3677 3.3584 3.3801 0.0217
76 53 65 7.0809 7.0636 7.0948 0.0312 7.0611 7.0501 7.0763 0.0263

76 11.4780 11.4591 11.4909 0.0318 11.4497 11.4385 11.4660 0.0275

Table 15
Two-Sample conditional predictors and 95% conditional interval bounds with their lengths

of the future observation for COVID-19 data of the United Kingdom

n,m r s ẑ(s)c LL UL Length

1 0.2684 0.1336 0.2797 0.1462
76, 35 53 18 2.0806 1.0922 3.1727 2.0805

35 21.0310 13.7513 21.1314 7.3801

Table 16
Two-Sample Bayes predictors and 95% Bayesian prediction bounds with their lengths

of the future observation for COVID-19 data of the United Kingdom

n,m r s SE loss function LINEX loss function
z̃(s)SE LL UL Length z̃(s)LIN LL UL Length

1 0.4930 0.4831 0.5022 0.0191 0.4970 0.4883 0.5058 0.0175
76, 35 53 18 1.5091 1.4983 1.5194 0.0212 1.4999 1.4905 1.5101 0.0196

35 4.0058 3.9955 4.0188 0.0234 4.0089 3.9986 4.0206 0.0221

Application 2
This application is given by Mubarak and Almetwally (2021). The data represent

a COVID-19 data belong to Japan of 38 days, from 4 September to 12 October 2020.
These data formed of drought mortality rates. The data are: 0.1596, 0.2733, 0.1142,
0.0851, 0.1976, 0.2243, 0.1810, 0.0828, 0.1504, 0.2169, 0.0404, 0.1208, 0.1334, 0.1589,
0.1184, 0.1698, 0.0648, 0.1027, 0.0511, 0.1019, 0.1520, 0.1006, 0.0624, 0.0372, 0.1112,
0.0859, 0.0854, 0.0847, 0.1443, 0.0836, 0.0238, 0.0355, 0.0353, 0.0937, 0.0349, 0.0924,
0.0344 and 0.0228.
From the value of K −S = 0.1316 and its corresponding p− value = 0.9033, then the
AFWE-L distribution fits the data very well.

In this application, the one-sample prediction scheme is used for predicting the
remaining observations, (n− r) under 30% level of Type II censoring. Tables 17 and
18 present the one-sample conditional and Bayes predictors of Y(s), where r < s ≤ n.
Also, the prediction bounds and their lengths are obtained.

Moreover, the two-sample prediction is used for predicting a future observation,
Z(s), from a future sample of COVID-19 drought mortality rates in Japan with size
m, where 1 ≤ s ≤ m. Tables 19 and 20 display the two-sample conditional and Bayes
predictors of Z(s), where 1 ≤ s ≤ m. Also, the prediction bounds and their lengths are
presented.
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Table 17
One-Sample conditional predictors and 95% conditional interval bounds and their lengths

of the future observation for COVID-19 data of Japan

n r s ŷ(s)c LL UL Length

28 0.2594 0.1725 0.3221 0.1496
38 27 33 0.3992 0.3240 0.4534 0.1294

38 0.5591 0.4614 0.6293 0.1679

Table 18
One-Sample Bayes predictors and 95% Bayesian prediction bounds with their lengths

of the future observation for COVID-19 data of Japan

n r s SE loss function LINEX loss function
ỹ(s)SE LL UL Length ỹ(s)LIN LL UL Length

28 0.1306 0.1220 0.1421 0.0201 0.1367 0.1307 0.1441 0.0134
38 27 33 0.1778 0.1615 0.1847 0.0231 0.1663 0.1564 0.1759 0.0195

38 0.2607 0.2495 0.2753 0.0257 0.2713 0.2597 0.2840 0.0243

Table 4.19
Two-Sample conditional predictors and 95% conditional interval bounds with their lengths

of the future observation for COVID-19 data of Japan

n,m r s ẑ(s)c LL UL Length

1 0.2723 0.1655 0.3000 0.1345
38,15 27 8 0.4078 0.3357 0.4436 0.1079

15 0.5859 0.4847 0.6365 0.1518

Table 20
Two-Sample Bayes predictors and 95% Bayesian prediction bounds with their lengths

of the future observation for COVID-19 data of Japan

n,m r s SE loss function LINEX loss function
z̃(s)SE LL UL Length z̃(s)LIN LL UL Length

1 0.0121 0.0036 0.0241 0.0206 0.0194 0.0100 0.0267 0.0167
38,15 27 8 0.0444 0.0325 0.0554 0.0229 0.0486 0.0391 0.0597 0.0206

15 0.9889 0.9770 1.0011 0.0241 0.9968 0.9866 1.0106 0.0240

Application 3
This application is given by Liu et al. (2021), where the survival times of patients

suffering from the COVID-19 epidemic in China is considered. The data represent the
survival times of patients from the time admitted to the hospital until death. Among
them, a group of 53 COVID-19 patients were found in critical condition in hospital
from January to February 2020.

The data are given by: 0.054, 0.064, 0.704, 0.816, 0.235, 0.976, 0.865, 0.364, 0.479,
0.568, 0.352, 0.978, 0.787, 0.976, 0.087, 0.548, 0.796, 0.458, 0.087, 0.437, 0.421, 1.978,
1.756, 2.089, 2.643, 2.869, 3.867, 3.890, 3.543, 3.079, 3.646, 3.348, 4.093, 4.092, 4.190,
4.237, 5.028, 5.083, 6.174, 6.743, 7.274, 7.058, 8.273, 9.324, 10.827, 11.282, 13.324,
14.278, 15.287, 16.978, 17.209, 19.092 and 20.083.

Based on the value of the K−S = 0.0943 and its corresponding p−value = 0.9747,
hence the AFWE-L distribution provides a good fitting to this real data set.

In this application, one-sample prediction scheme is applied under 30% level of
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Type II censoring for predicting the remaining observations, (n− r). Tables 21 and
22 present the one-sample conditional and Bayes predictors of Y(s), where r < s ≤ n.
Also, the prediction bounds and their lengths are obtained.

Moreover, the two-sample prediction is used for predicting a future observation,
Z(s), from a future sample of COVID-19 drought mortality rates in China with size
m, where1 ≤ s ≤ m. Tables 23 and 24 display the two-sample conditional and Bayes
predictors of Z(s), where 1 ≤ s ≤ m. Also, the prediction bounds and their lengths are
presented.

Table 21
One-Sample conditional predictors and 95% conditional interval bounds and their lengths

of the future observation for COVID-19 data of China

n r s ŷ(s)c LL UL Length

38 7.6991 5.2161 7.9273 2.7112
53 37 45 17.0940 10.4736 17.9421 7.4685

46 19.0603 11.6873 19.7235 8.0362
53 49.0167 29.3250 49.2677 19.9427

Table 22
One-Sample Bayes predictors and 95% Bayesian prediction bounds with their lengths

of the future observation for COVID-19 data of China

n r s SE loss function LINEX loss function
ỹ(s)SE LL UL Length ỹ(s)LIN LL UL Length

38 5.0701 5.0544 5.0842 0.0298 5.0780 5.0614 5.0874 0.0260
53 37 45 10.8110 10.7932 10.8271 0.0339 10.8157 10.7993 10.8297 0.0304

46 11.2901 11.2783 11.3142 0.0359 11.2753 11.2552 11.2901 0.0349
53 20.0934 20.0745 20.1113 0.0368 20.0763 20.0537 20.0890 0.0353

Table 23
Two-Sample conditional predictors and 95% conditional interval bounds with their lengths

of the future observation for COVID-19 data of China

n,m r s ẑ(s)c LL UL Length

1 5.0659 1.0977 7.0000 5.9023
53,25 37 13 14.9376 6.2585 29.1000 22.8415

25 84.7053 32.7065 90.1200 57.4135

Table 24
Two-Sample Bayes predictors and 95% Bayesian prediction bounds with their lengths

of the future observation for COVID-19 data of China

n,m r s SE loss function LINEX loss function
z̃(s)SE LL UL Length z̃(s)LIN LL UL Length

1 0.0569 0.0476 0.0657 0.0181 0.0470 0.0383 0.0537 0.0153
53,25 37 13 0.6071 0.5946 0.6216 0.0270 0.5991 0.5843 0.6066 0.0223

25 2.5809 2.5723 2.5997 0.0274 2.5993 2.5850 2.6083 0.0233

Concluding remarks

• As s increases, the conditional predictors and the BPs under the SE and LINEX
loss functions increase.
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• For all prediction intervals, the lower and upper bounds and their lengths increase
as s increases, that is the lower and upper bounds and their length of the first
order statistic (in the case of two-sample prediction) are less than the lower and
upper bounds and their length of the last order statistic, and in the case of one-
sample prediction, the lower and upper bounds and their lengths of the (r + 1)th

order statistic are smaller than their corresponding values for the (n− r)th order
statistic.

• The conditional predictions and the BPs under the SE and LINEX loss functions
are included between the lower and upper bounds of all prediction intervals.

• In all cases, the lengths of the BPBs under the LINEX loss function are less than
the lengths of the BPBs under the SE loss function.

6. Conclusion

Prediction of future observations is an important problem in many practical applica-
tions. This paper focuses on deriving different predictors for future observation from
the AFWE-L distribution based on Type II censoring scheme. One-sample prediction
and two-sample prediction are studied throughout non-Bayesian and Bayesian frame-
works. The conditional prediction approach is discussed as a non-Bayesian prediction
method. Also, Bayes predictors are obtained by applying a joint bivariate prior distri-
bution under two different loss functions, the SE and LINEX loss functions. Moreover,
a simulation study is conducted to evaluate the performance of the derived predictors
and three applications of COVID -19 data in some countries are considered. In gen-
eral, from the simulation study and the applications computations showed that as s
increases, all the point predictors increase. Also, for all prediction intervals, the lower
and upper bounds and their lengths increase as s increases. The conditional predictors
and the BPs under the SE and LINEX loss functions are included between the lower
and the upper bounds of all prediction intervals. Finally, in Bayesian approach, the
lengths of the BPBs under the LINEX loss function are less than the lengths of the
BPBs under the SE loss function.
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